Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Code refactoring is widely recognized as an essential software engineering practice to improve the understandability and maintainability of the source code. The Extract Method refactoring is considered as “Swiss army knife” of refactorings, as developers often apply it to improve their code quality, e.g., decompose long code fragments, reduce code complexity, eliminate duplicated code, etc. In recent years, several studies attempted to recommend Extract Method refactorings allowing the collection, analysis, and revelation of actionable data-driven insights about refactoring practices within software projects. Aim: In this paper, we aim at reviewing the current body of knowledge on existing Extract Method refactoring research and explore their limitations and potential improvement opportunities for future research efforts. That is, Extract Method is considered one of the most widely-used refactorings, but difficult to apply in practice as it involves low-level code changes such as statements, variables, parameters, return types, etc. Hence, researchers and practitioners begin to be aware of the state-of-the-art and identify new research opportunities in this context. Method: We review the body of knowledge related to Extract Method refactoring in the form of a systematic literature review (SLR). After compiling an initial pool of 1,367 papers, we conducted a systematic selection and our final pool included 83 primary studies. We define three sets of research questions and systematically develop and refine a classification schema based on several criteria including their methodology, applicability, and degree of automation. Results: The results construct a catalog of 83 Extract Method approaches indicating that several techniques have been proposed in the literature. Our results show that: (i) 38.6% of Extract Method refactoring studies primarily focus on addressing code clones; (ii) Several of the Extract Method tools incorporate the developer's involvement in the decision-making process when applying the method extraction, and (iii) the existing benchmarks are heterogeneous and do not contain the same type of information, making standardizing them for the purpose of benchmarking difficult. Conclusions: Our study serves as an “index” to the body of knowledge in this area for researchers and practitioners in determining the Extract Method refactoring approach that is most appropriate for their needs. Our findings also empower the community with information to guide the future development of refactoring tools.more » « less
-
Refactoring is the practice of improving software quality without altering its external behavior. Developers intuitively refactor their code for multiple purposes, such as improving program comprehension, reducing code complexity, dealing with technical debt, and removing code smells. However, no prior studies have exposed the students to an experience of the process of antipatterns detection and refactoring correction, and provided students with toolset to practice it. To understand and increase the awareness of refactoring concepts, in this paper, we aim to reflect on our experience with teaching refactoring and how it helps students become more aware of bad programming practices and the importance of correcting them via refactoring. This paper discusses the results of an experiment in the classroom that involved carrying out various refactoring activities for the purpose of removing antipatterns using JDeodorant, an IDE plugin that supports antipatterns detection and refactoring. The results of the quantitative and qualitative analysis with 171 students show that students tend to appreciate the idea of learning refactoring and are satisfied with various aspects of the JDeodorant plugin's operation. Through this experiment, refactoring can turn into a vital part of the computing educational plan. We envision our findings enabling educators to support students with refactoring tools tuned towards safer and trustworthy refactoring.more » « less
-
Static analysis tools are frequently used to scan the source code and detect deviations from the project coding guidelines. Given their importance, linters are often introduced to classrooms to educate students on how to detect and potentially avoid these code anti-patterns. However, little is known about their effectiveness in raising students’ awareness, given that these linters tend to generate a large number of false positives. To increase the awareness of potential coding issues that violate coding standards, in this paper, we aim to reflect on our experience with teaching the use of static analysis for the purpose of evaluating its effectiveness in helping students with respect to improving software quality. This paper discusses the results of an experiment in the classroom, over a period of 3 academic semesters, involving 65 submissions that carried out code review activity of 690 rules using PMD. The results of the quantitative and qualitative analysis show that the presence of a set of PMD quality issues influences the acceptance or rejection of the issues, design, and best practices-related categories that take longer time to be resolved, and students acknowledge the potential of using static analysis tools during code review. Through this experiment, code review can turn into a vital part of the educational computing plan. We envision our findings enabling educators to support students with code review strategies in order to raise students’ awareness about static analysis tools and scaffold their coding skills.more » « less
-
It is good practice to name test methods such that they are comprehensible to developers; they must be written in such a way that their purpose and functionality are clear to those who will maintain them. Unfortunately, there is little automated support for writing or maintaining the names of test methods. This can lead to inconsistent and low-quality test names and increase the maintenance cost of supporting these methods. Due to this risk, it is essential to help developers in maintaining their test method names over time. In this paper, we use grammar patterns, and how they relate to test method behavior, to understand test naming practices. This data will be used to support an automated tool for maintaining test names.more » « less
An official website of the United States government
